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Multiple forward scattering of scalar waves through inhomogeneously random burstlike media
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The study of wave propagation through inhomogeneously random media is of importance in actual propa-
gation scenarios, where small- and large-scale inhomogeneities, inadequate sampling, and source and detector
fluctuations cannot be avoided. The problem, formulated as propagation through a longitudinally correlated
non-Gaussian media, is addressed by using Feynman’s path integral, and where applicable, by equivalent
partial-differential equation§S1063-651X96)05005-4

PACS numbgs): 42.25.Kb, 05.40¢tj, 42.68.Ay, 42.68.Bz

I. INTRODUCTION a locally homogeneous scale is unidentifiable, we need to
synthesize a process that will emulate realistic small- and
This paper presents a comprehensive theory for forwarthrge-scale fluctuations of the medium. This is not a trivial
multiple scattering of scalar waves in random media. Theaask, because in addition to needing the correct physical
scope of propagation through random media covers the plarcharacteristics, we must be able to derive the characteristic
etary and astrophysical observations. The random mediurunctional of the medium. Moreover, the large-scale process
can be either the Earth, or the turbulent atmosphere, or thig not universal, and is influenced by external factors particu-
oceanic internal waves, or the ionospheric electron concenar to the propagation arena.
tration, or various clouds in the interstellar medium, or the  propagation through an inhomogeneously random me-
random gravitational lenses. o dium produces longitudinal correlation, which cannot be ig-
Whereas the study of lightwave propagation in randomhgred. It is pronounced when a few large-scale events occur.
media began in 1960, only a few papers presented theorieg myltitude of events along the path act to homogenize the
on propagation through inhomogeneously random media bgsropagation, creating an effective medium with a scale of
fore 1995[1-3]. The inhomogeneous statistics are probablyhomogeneity that is larger than the homogeneous small-scale
the most undesirable features of a random phenomenon. Ifsngth. In this case, the large-scatecorrelated process is
cluding them in the propagation process, instead of avoidingppjicable. This model leads to the Markov approximation
them, is a nontrivial generalization of the theory. ~ for the propagatiori2], where partial-differential equations
The model of light propagation through large-scale inho-c3n pe found in the same way used to derive the Stthger
mogeneities is described accurately by the narrow-angle aRsquation from Feynman’s path integfal.
proximation of the Helmholtz equation. This approximation, '|n this paper we adopted a plausible model for intermit-
which will be discussed briefly later, leads to the Sehro tent refractivity as a superposition of a small-scale Gaussian
dinger wave equation, where the range is the timelike variprocess and a large-scale filtered point process. The small-
able, and the fluctuating refractivity acts like a scatteringscale Gaussian model is customary in studies of propagation
potential. Therefore our techniques may be useful in thgnrough randomly homogeneous media, but the filtered point
studies of particles that move in inhomogeneously randonprocess for the large-scale variability is an important gener-
potentials. _ alization. It allows us to account for bursts that modulate the
~ Taking into account nonstationary processes poses a dikma||-scale process. We argue that these processes should be
ficulty in modeling, and the interpretation of data. There arecgrrelated to maintain the cascading of energy from large to
two ways to handle the nonstationaritg conditional sam-  sma| scales. This assumption provides us with the informa-
pling that intends to validate a limited process that is welltion that is necessary to analyze turbulence data in order to
defined, onb) randomization of this process to obtain a COM-parametrize the model.
posite phenomenon. This paper adoffty which gives a In this paper, Sec. Il provides the basic definitions and
wider physical interpretation of actual processes. equation of wave fields propagating through random media.
When a locally homogeneous scale is identified, we carsection 111 describes the propagation through inhomoge-
obtain local averages, i.e., mean, variance, etc. These quafeously random media, and the limit 8correlated process.
tities are slowly modulated by the large-scale variab{8).  sSection IV introduces the models for small- and large-scale

The split into small and large scales offers a ngtural proceyariabilities, and a few examples. We conclude this paper
dure to measure the parameters of the medium: whereggitn a short summary.

small-scale variabilities are measured with a high resolution
but over a small extent, the large-scale variability is mea-
sured over a large extent, albeit with cruder resolution. When Il. BASIC DEFINITIONS AND EQUATIONS
Consider a wave/{(z,x) impinging on a turbulent half
“Fax: (303 492-2468; electronic address: spacez>Z'. Forward scattering under the narrow-angle ap-
jgozani@cires.colorado.edu proximation of the Helmholtz equation can be described by
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the two-dimensional Schdinger wave equatioite.g., Ref. Finally we note that in this paper we denote by boldface
[2]), characters both multivectors and random quantities. Equation
(2) is an example, whene andy are multivectors and\ is a
_ 1 random parameter that can also be a vector. The reader can
192+ 5 Ayt > x(z,x;a) | =0, (13 determine the type of these quantities from the context.

with the initial condition B. Small- and large-scale averages

We assume that the random parameters can be partitioned
W(z=2",X)=tho(X,80) € Lo(IR?). (1b) into small-and large-scale variabilitiesA={ay,A, A }.
Small-scale variabilities are fluctuations that are smoothed
The validity of (1) is well established; the narrow-angle ap- by diffraction and self-averaging due to locally homoge-
proximation is valid wher>\, wherel is the smallest scale Nneous fluctuating refraction along a short propagation range.
of the medium, and is the Wave|ength_ Under this approxi- This Varlablllty includes intrinsic intermittency effec[é],
mation, the backscattering and polarization effects are negle-g.. fluctuations due to the energy-dissipation rate of the
gible. turbulence. Large-scale variability is the fluctuation of the
Equations(1a and(1b) comprise a Cauchy problem. The locally homogeneous mediuf3]. Thus two types of aver-
timelike variableze [Z’,Z"] denotes the range. The space- ages should be considered, the small-scale conditional aver-
like variablex e R? is a transverse position vector. The para-age for a given frozen large-scale event denoted by
metric variability x(z,x;a) is the random lossless electric sus- { |AL)a,, and the large-scale average denoted by, . The
ceptibility with a formal random variabla defined over an (total) ensemble average is thus written aé)
appropriate probability space. [da), k is a reference wave =(( |AL>A|>AL'
number, and\, is a two-dimensional Laplacian. if1b), the
formal random paramete, is assumed to be independent of
a. Although in a different context, this equation is similar to
the time-dependent Schiimger equation with a random po- The governing equation for the evolution of the product
tential. of fields propagating in the mediuiie.g., Gozani3]) fol-
lows the von Neumann equation:

C. Moment equations

A. The statistical moments [2ikd,+Ay— A, +K3V(Z,x,y;A)]y=0, (53)
Because the solutions dfl) are stochastic, measurable ith the initial o
quantities are sought in terms of the statistical moments. Th@Ith the initial condition
product of instantaneous fields at the same propagation — > _ .
plane,z, is defined by 2= 27XY) = 70(XY:%) (5b)
N M defined in(4).
DAY — . 5. In (5a, A=A +---+Ay, wheresis x ory, andd is N or
XY A)= Xn A *(Z,Ym:A). 2 o 21 dr X
HZXYiA) nl;[1 Wz )r’rgl v (2YmiA) @ M, accordingly. The functioi(z,x,y;A) describes the scat-
tering potential. It is customary to split it into an average and

In (2), the multivectors random parts

X:(Xl,...,XN)ERZN, y:(yly---,yM)ERZM (3) V(ZaX,y;A):U(21X1Y)+V(Z1X,y;A), (63)

where
are two clusters of points on the planewhereze[Z',Z"].
Thus each point in the s¢k,} or {y} is a two-dimensional U(z,x,y)=(V(z,x,y;A)), (¥(z,x,y;A))=0. (6b)
transverse  position vector. The components of
A=(ag,a,,...a ) are formal random parameters defined overln general,U(-) can be a function of space describing an
an appropriate probability space. They describe the randonithomogeneous medium. By definition, the susceptibility is
ness and uncertainty existing in our problem. Note that therq=€—1, wheree is the dielectric permittivity. We can write
may be uncertainties that are not due to the turbulence of th¥(-), U(-), and#(-) in terms of x(z,x) =(x(z.x)) +'€(z.x),
medium, but may induce field fluctuations that are difficult towith (€)=0, as follows:
distinguish from the turbulence-related fluctuations. For ex-

ample, at the plane=Z’, the product2) becomes v . x(z,x")
U (z,x,y)=f d? a(x")§ (x(z,x")), (78
N v = €(z,x")
¥(z=2' xy;a0) =11 w(z=2" %y
n=1 where
M N M
<AL =2 ymiz. @ a(x)= 3, 8x' X~ 3, 8X'~ym) (7D

Here, a, denotes the fluctuations due to the source. is a function ofx’ andx(7), andy(7).
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[ll. PROPAGATION THROUGH INHOMOGENEOUSLY RANDOM MEDIA

The Green'’s function fo(5a) is the solution for a homogeneous medium to be modulated later by a large-scale process. The
Green'’s function fo(5a and(5b) is written as a Feynman path integfal:

Z”, Hl ’
K@iz Xy = [ DDy (o
Z/ ! yl

k [z . )
xexpl’. s dr[lxmlz—ly(r)lz]]

k "
xex;{i EJZ drV[r,x(r),y(r);A]}, (83
Z!
subject to the condition

K(Z,X”,y”;Z,X’ ,yr): 5(X"—X,) 5(y/ _yrr)’ (Sb)

and the final solution is obtained by a superposition integral. For example, if only fluctuations of the source are concerned, the
result reads

<y(z//,XI/,yr/)>: f dX’dy,K(Z",X”,y";Z, ,X’ ,y!)<,yo(xr yy,1a0)>ao (8C)
In (8a), the first, second, and third factors describe functional integration, diffraction, and refraction, respectively. The
present paper is concerned mainly with the thireffractive factor, thus details of functional integration are unnecessary.

Exhaustive details of application of functional integration to propagation through random media are covered e[&where
The fluctuations of the third term induce fluctuationskofi). We apply the small-scale averagek¢-) and get

g(Z",X",y”;Z’,X,,y,):<K(Z,X”,y";Z,X,,y’)|AL>AI

_ f Z"’X”'y,’DZNx(r)DZMy(ﬂe"p{i ; Lz,ﬂdT“"‘( ”'2_'3'(7)'2]}

z' x'y

x 'kfzﬁd u
ex%li 21 T [TaX(T):Y(T)]

) k 7"
><<exp[| > f dr V[T,X(T),y(T)yA]HAL> , (93
Z

Al

where

g(Z,X",y";Z,X, ,yr): 5(X"_ X’)5(y’ _yn). (gb)

A

The third term in(9a) is the characteristic functional,

(D,,‘AL[(I)( : ),X( : ),Y(');Z,,Z”]E<eXp{ i fzﬁyrdT w(T)V[’T,X( T)iy(T)!A]

where
KEITAL(Tl X1, Y15-3Tn X vyn)E«V( T1,X1,Y1 A y( TnsXn»Yn -A)|AL>> (10b

is thenth-order conditional cumular{semi-invariank with respect to{#{ 7.x(7),y(7);A]A_}. In (10), X,=X(7,), Yo=Y(7,), and
w,=ow(1,)=k/2. In (10b), ({)) denotes cumulant average. Because a longitudinal correlation is kept, the trajedtgraasd
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y(7) are coupled throughout the propagation path. This renders the characteristic functional global, and thus differential
equations cannot be obtained. The characteristic functional is written in terms of the characteristic functional of the dielectric
permittivity as

k
q)V|AL w(' )E E!X(')iy(‘ );Z”Z" E(I);\AL

;ar(.);z’,z”}:<ex+ ; Jzz/ndrf A2’ a (X' )e(z,x")

wherea(-) is defined in(7b); note thate,(-) depends ox andy as parameters, and through themio obtain(y), we
apply(g(-))AL, and use it in(8c).

‘AL> , (1D
Al

Propagation through a é-correlated medium
The propagation through &correlated medium is obtained with

KA (71T =K (T13X0, Y100 X0 Yn) 8071 72) - 87 1= 70), (12)

wherex,=x(r,) e R?N andy,=y(r,) e R?M. This case leads to

k o1 Kk\" [z
O w(-)z§,x<->,y<->;2',2"}= 2 o (| —) d7 KGL7x(7).y(7)]. (13
e NP\ 2] Jz

A &correlated model is an idealization that is pertinent when many longitudinal scales of a homogeneous process are
embedded in the correlation length of the field. The latter is of the order of the propagation Zangé,-Z' [7]. The
longitudinal correlation of the medium is usually very small compared with the range. Therefaétedhelated model applies
and the position ok(7;) andy(,) is contracted to the same plarne; 7, =17,. In this case, we can expagz+Azx,y;Z' x".y")
in a Taylor series up t®(Az%) and get

i ik
07z9(zlxay;z/:xl,yl): ﬂ [Ax_Ay]g(Z,X,y;Z,,X,,y')-F ? U(vaay)—’_azeeff

N| X

XyZ' .z

W=

]g(z,x,y;z’ XY,
(14a

with the initial condition cesss(-). This assumption is justified because we have many
small-scale events in each characteristic scalé&(ef and
consequently, also in the range=Z"—Z2'. For the large-
g(Z' X'y"Z' X'y )=6(x"—x")5(y' —y"). (14b  scale evenA_, we introduce a heuristic yet flexible model
of the filtered point procesS(-). To account for the cascad-

ing of energy from large into small scales, we keep the en-
A similar partial-differential equation was derived for homo- segmble am?éllovqsms%));to. P

geneously random media by KlyatsKi®|. To obtain(y), we
apply(g(-))AL, use it in(8c), and repeat the procedure used

to derive(14) to obtain an analogous equation for the large- N
scale variability. S(R{ELIRD =2, W(RR,,E,),

n=1

The large-scale proce$-) assumes the form

(15
R,,ReR3 N=1

IV. STATISTICAL MODELS FOR THE SMALL- AND

LARGE-SCALE VARIABILITIES with S(-)=0 for N=0. It depends on a three-dimensional

position vectorR=(z,x), wherexeR2 The numbem fol-

It has been argued in the pd8f and recently confirmed lows a point distributionrP{N=N}. The set of points is dis-
by wavelet decompositioh10] that a turbulent realization tributed with the nonuniform densitjr(R). The set{W(-)}
can be decomposed orthogonally into a small-scale proces®nsists of functions with compact support, centered around
that is practically Gaussian, and a large-scale process thtite random point$R;}, j=1,...N. It is chosen according to
accounts for the burstlike coherent structures. Followinghe prevalent feature observed visually or with a pattern rec-
these findings, we adopt for the small-scale evi&na con-  ognition process, and finally shaped in accordance to spectral
ditional zero-mean homogeneo#ésorrelated Gaussian pro- demands, similarity laws, etc. The parameter {&¢ con-
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sists of independent, identically distributed random vectoraimeV, that is smaller than the volumé on whichfz(R) is

that modulate all the properties ¥f(-). The components of defined, i.e.fyd®R fz(R)=1. Roughly speaking, the shape

= can describe local features such as local frequency, amplef V is a narrow tube with a radius of the first Fresnel zone.
tude, duration, slopes, contour moments: centroid, moment The filtered point process is convenient for propagation
of inertia, etc., and can also switch between sets of functionstudies because it can be used to synthesize a quite arbitrary,
The distribution of the parametefs(E), as well as the local burstlike phenomenon, and it has a characteristic functional
distribution of the burst$z(R), must be found and param- in closed analytical form. Using a sequence of conditional
etrized from temperature data. Finally, we also allbyR) averages in the ord¢E, }, {R,}, N, andfg, it can be shown

to be random by denoting it bfg(R). We assume that our that the conditional characteristic functional for givigr-f
propagation process evolves in an effective scattering volis

%lfg EaT(');Z,!Z”}:<a[fR’]N>N’ (163
k
a[fR']ElJFjV d3R’fR,(R’)(<DE4§ aT(-),R,R’}—l}, (16b
k | — ! n ! ‘-
bz > a(-),RR"|=( byzrla,),Z2",2"] ex f ’dexEvs X a (X)W(7,x,R",E) R (160

In (16b), V is the effective scattering volume, and(ib60

) k 7"
<ex+ = f dq-f d?x aT(x)s(T,x,R’,E)}
2 Jz X' eV

2 ZN
_ p{— 5 f de 5 d?x;d%Xpa(X1) @, (X2) Agz re [ X1(7) = X2 7)1 (17b
Xl X2€

k
%W{ a ()2’ z"}

E> (173

where the assumption of a homogeneatsorrelateds(-) wherea is defined in(16) and (17). Now we apply(®

5|fR
leads to

[ ]>fR, and finally the resultingb+[ -] is inserted into the

o expression9a) of the path integral.
AQE,R'[Xl(Z)—Xz(Z)]:J _di(dz.x,(2);R",E] An important example is the generalized Poisson process
for inhomogeneous refractivity. This model can include mul-
Xqz+{,X(z+{); R BN E)s. tiple scattering by aeroso[41] in addition to the turbulence

and the large-scale structures. The binomial variate tends to

the Poisson variate asN—« and p=VJ/V<1, for

m=0(Np) iL The limiting  distribution is

P{m=m}=e"™(m)™m!. For a nonuniform distribution of
Consider now a few examples that seem to be appropriatgyrsts, withN—o, V—, andp= fv dR fr(R)<1, we de-

for large-scale events of refractivity. We take a large volumq:Ine the intensityA(R) =(N)fx(R) and obtain the character-

V over which reliable statistics of the point process can qutIC functional of the generalized Poisson process
defined. Then we define a probability of occurrence of an '
<epr d°R A(R)[ =

elementary event iV to bep=VJ/V, i.e., 0<p<1, and de-
fineq=1—p. The case oM events inV out of N indepen- P~
k . ! 4
EaT(-),Z 2" R|—1 .
A
(19

(179

Examples

a()Z Z"

dent events itV is described by the binomial variate, with
P{m=m|N}=(N)p™g"~™ 0=m=N. In this caseN is fixed
and we are looking fota™),,. Thus the characteristic func- X
tional reads

T( Z//

el 5

N
E( ) N=mam= (pa+q)V,

m=0

Many discrete distributions can be used to generdlise
(18 and(18). Any functionu(t), 0<t<1, that admits Maclaurin
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series with positive coefficients can be used to create a chadata for realistic propagation scenarios, and for validating
acteristic functionalu(ta)/u(t) [12]. In particular, by using simulations of propagation through inhomogeneously ran-
the binomial variate it is possible to obtain the characteristicdom media. The correspondence of these expressions with a
functional forN=0,1,... large-scale events along the path. Itreadily generated, albeit flexible model, can contribute to a
is anticipated that a smal, e.g., 1-4, will produce a sig- controlled study of this phenomenon. Although the formula-
nificant effect, whereas a larde¢, e.g.,N>10, will homog- tion is rather complicated, it appears that it can be computed
enize the path. In this case the large-scatmrrelated model for N=M=1, andN=M =2 in (2)—(4), which are of a great

is justified, and a large-scale partial-differential equation carnnterest in imaging, energy channeling, and remote sensing
be obtained using the procedure mentione(llif). The mul-  studies.

tiple large-scales-correlated version of the filtered point pro-

cess is obtained by inserting W(z,x,R’,E) ACKNOWLEDGMENTS
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V. CONCLUSIONS
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