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The study of wave propagation through inhomogeneously random media is of importance in actual propa-
gation scenarios, where small- and large-scale inhomogeneities, inadequate sampling, and source and detector
fluctuations cannot be avoided. The problem, formulated as propagation through a longitudinally correlated
non-Gaussian media, is addressed by using Feynman’s path integral, and where applicable, by equivalent
partial-differential equations.@S1063-651X~96!05005-4#

PACS number~s!: 42.25.Kb, 05.40.1j, 42.68.Ay, 42.68.Bz

I. INTRODUCTION

This paper presents a comprehensive theory for forward
multiple scattering of scalar waves in random media. The
scope of propagation through random media covers the plan-
etary and astrophysical observations. The random medium
can be either the Earth, or the turbulent atmosphere, or the
oceanic internal waves, or the ionospheric electron concen-
tration, or various clouds in the interstellar medium, or the
random gravitational lenses.

Whereas the study of lightwave propagation in random
media began in 1960, only a few papers presented theories
on propagation through inhomogeneously random media be-
fore 1995@1–3#. The inhomogeneous statistics are probably
the most undesirable features of a random phenomenon. In-
cluding them in the propagation process, instead of avoiding
them, is a nontrivial generalization of the theory.

The model of light propagation through large-scale inho-
mogeneities is described accurately by the narrow-angle ap-
proximation of the Helmholtz equation. This approximation,
which will be discussed briefly later, leads to the Schro¨-
dinger wave equation, where the range is the timelike vari-
able, and the fluctuating refractivity acts like a scattering
potential. Therefore our techniques may be useful in the
studies of particles that move in inhomogeneously random
potentials.

Taking into account nonstationary processes poses a dif-
ficulty in modeling, and the interpretation of data. There are
two ways to handle the nonstationarity:~a! conditional sam-
pling that intends to validate a limited process that is well
defined, or~b! randomization of this process to obtain a com-
posite phenomenon. This paper adopts~b!, which gives a
wider physical interpretation of actual processes.

When a locally homogeneous scale is identified, we can
obtain local averages, i.e., mean, variance, etc. These quan-
tities are slowly modulated by the large-scale variability@3#.
The split into small and large scales offers a natural proce-
dure to measure the parameters of the medium: whereas
small-scale variabilities are measured with a high resolution
but over a small extent, the large-scale variability is mea-
sured over a large extent, albeit with cruder resolution. When

a locally homogeneous scale is unidentifiable, we need to
synthesize a process that will emulate realistic small- and
large-scale fluctuations of the medium. This is not a trivial
task, because in addition to needing the correct physical
characteristics, we must be able to derive the characteristic
functional of the medium. Moreover, the large-scale process
is not universal, and is influenced by external factors particu-
lar to the propagation arena.

Propagation through an inhomogeneously random me-
dium produces longitudinal correlation, which cannot be ig-
nored. It is pronounced when a few large-scale events occur.
A multitude of events along the path act to homogenize the
propagation, creating an effective medium with a scale of
homogeneity that is larger than the homogeneous small-scale
length. In this case, the large-scaled-correlated process is
applicable. This model leads to the Markov approximation
for the propagation@2#, where partial-differential equations
can be found in the same way used to derive the Schro¨dinger
equation from Feynman’s path integral@5#.

In this paper we adopted a plausible model for intermit-
tent refractivity as a superposition of a small-scale Gaussian
process and a large-scale filtered point process. The small-
scale Gaussian model is customary in studies of propagation
through randomly homogeneous media, but the filtered point
process for the large-scale variability is an important gener-
alization. It allows us to account for bursts that modulate the
small-scale process. We argue that these processes should be
correlated to maintain the cascading of energy from large to
small scales. This assumption provides us with the informa-
tion that is necessary to analyze turbulence data in order to
parametrize the model.

In this paper, Sec. II provides the basic definitions and
equation of wave fields propagating through random media.
Section III describes the propagation through inhomoge-
neously random media, and the limit ofd-correlated process.
Section IV introduces the models for small- and large-scale
variabilities, and a few examples. We conclude this paper
with a short summary.

II. BASIC DEFINITIONS AND EQUATIONS

Consider a wavec(z,x) impinging on a turbulent half
spacez.Z8. Forward scattering under the narrow-angle ap-
proximation of the Helmholtz equation can be described by
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the two-dimensional Schro¨dinger wave equation~e.g., Ref.
@2#!,

F i ]z1 1

2k
Dx1

k

2
x~z,x;a!Gc50, ~1a!

with the initial condition

c~z5Z8,x!5c0~x,a0!PL2~R
2!. ~1b!

The validity of ~1! is well established; the narrow-angle ap-
proximation is valid whenl@l, wherel is the smallest scale
of the medium, andl is the wavelength. Under this approxi-
mation, the backscattering and polarization effects are negli-
gible.

Equations~1a! and~1b! comprise a Cauchy problem. The
timelike variablezP[Z8,Z9] denotes the range. The space-
like variablexPR2 is a transverse position vector. The para-
metric variabilityx~z,x;a! is the random lossless electric sus-
ceptibility with a formal random variablea defined over an
appropriate probability space. In~1a!, k is a reference wave
number, andDx is a two-dimensional Laplacian. In~1b!, the
formal random parametera0 is assumed to be independent of
a. Although in a different context, this equation is similar to
the time-dependent Schro¨dinger equation with a random po-
tential.

A. The statistical moments

Because the solutions of~1! are stochastic, measurable
quantities are sought in terms of the statistical moments. The
product of instantaneous fields at the same propagation
plane,z, is defined by

g~z,x,y;A![ )
n51

N

c~z,xn ;A! )
m51

M

c* ~ ẑ,ym ;A!. ~2!

In ~2!, the multivectors

x5~x1 ,...,xN!PR2N, y5~y1 ,...,yM !PR2M ~3!

are two clusters of points on the planez, wherezP[Z8,Z9].
Thus each point in the set$xn% or $ym% is a two-dimensional
transverse position vector. The components of
A[~a0,a1,...,aL! are formal random parameters defined over
an appropriate probability space. They describe the random-
ness and uncertainty existing in our problem. Note that there
may be uncertainties that are not due to the turbulence of the
medium, but may induce field fluctuations that are difficult to
distinguish from the turbulence-related fluctuations. For ex-
ample, at the planez5Z8, the product~2! becomes

g~z5Z8,x,y;a0![ )
n51

N

c~z5Z8,xn ;a0!

3 )
m51

M

c* ~z5Z8,ym ;a0!. ~4!

Here,a0 denotes the fluctuations due to the source.

Finally we note that in this paper we denote by boldface
characters both multivectors and random quantities. Equation
~2! is an example, wherex andy are multivectors andA is a
random parameter that can also be a vector. The reader can
determine the type of these quantities from the context.

B. Small- and large-scale averages

We assume that the random parameters can be partitioned
into small-and large-scale variabilities:A5$a0,A l ,AL%.
Small-scale variabilities are fluctuations that are smoothed
by diffraction and self-averaging due to locally homoge-
neous fluctuating refraction along a short propagation range.
This variability includes intrinsic intermittency effects@4#,
e.g., fluctuations due to the energy-dissipation rate of the
turbulence. Large-scale variability is the fluctuation of the
locally homogeneous medium@3#. Thus two types of aver-
ages should be considered, the small-scale conditional aver-
age for a given frozen large-scale event denoted by
^ uAL&Al, and the large-scale average denoted by^ &AL. The
~total! ensemble average is thus written aŝ &
[Š^ uAL&Al‹AL.

C. Moment equations

The governing equation for the evolution of the product
of fields propagating in the medium~e.g., Gozani@3#! fol-
lows the von Neumann equation:

@2ik]z1Dx2Dy1k2V~z,x,y;A!#g50, ~5a!

with the initial condition

g~z5Z8,x,y!5g0~x,y;a0! ~5b!

defined in~4!.
In ~5a!, Ds[D11•••1Dd , wheres is x or y, andd is N or

M , accordingly. The functionV~z,x,y;A! describes the scat-
tering potential. It is customary to split it into an average and
random parts

V~z,x,y;A!5U~z,x,y!1n~z,x,y;A!, ~6a!

where

U~z,x,y![^V~z,x,y;A!&, ^n~z,x,y;A!&50. ~6b!

In general,U~•! can be a function of space describing an
inhomogeneous medium. By definition, the susceptibility is
x[e21, wheree is the dielectric permittivity. We can write
V~•!, U~•!, andn~•! in terms ofx(z,x)5^x(z,x)&1 ẽ(z,x),
with ^ẽ&50, as follows:

V
U
n
J ~z,x,y!5E

2`

`

d2x8at~x8!H x~z,x8!

^x~z,x8!&
ẽ~z,x8!

, ~7a!

where

at~x8!5 (
n51

N

d~x82xn!2 (
m51

M

d~x82ym! ~7b!

is a function ofx8 andx~t!, andy~t!.
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III. PROPAGATION THROUGH INHOMOGENEOUSLY RANDOM MEDIA

The Green’s function for~5a! is the solution for a homogeneous medium to be modulated later by a large-scale process. The
Green’s function for~5a! and ~5b! is written as a Feynman path integral@5#:

K~Z9,x9,y9;Z8,x8,y8!5E
Z8,x8,y8

Z9,x9,y8
D2Nx~t!D2My~t!

3expH i k2 E
Z8

Z9
dt@ uẋ~t!u22uẏ~t!u2#J

3expH i k2 E
Z8

Z9
dt V@t,x~t!,y~t!;A#J , ~8a!

subject to the condition

K~z,x9,y9;z,x8,y8!5d~x92x8!d~y82y9!, ~8b!

and the final solution is obtained by a superposition integral. For example, if only fluctuations of the source are concerned, the
result reads

^g~Z9,x9,y9!&5E dx8dy8K~Z9,x9,y9;Z8,x8,y8!^g0~x8,y8;a0!&a0. ~8c!

In ~8a!, the first, second, and third factors describe functional integration, diffraction, and refraction, respectively. The
present paper is concerned mainly with the third~refractive! factor, thus details of functional integration are unnecessary.
Exhaustive details of application of functional integration to propagation through random media are covered elsewhere@6#.

The fluctuations of the third term induce fluctuations onK~•!. We apply the small-scale average toK~•! and get

g~Z9,x9,y9;Z8,x8,y8!5^K~z,x9,y9;z,x8,y8!uAL&Al

5E
Z8,x8,y8

Z9,x9,y8
D2Nx~t!D2My~t!expH i k2 E

Z8

Z9
dt@ uẋ~t!u22uẏ~t!u2#J

3expH i k2 E
Z8

Z9
dt U@t,x~t!,y~t!#J

3K expH i k2 E
Z8

Z9
dt n@t,x~t!,y~t!,A#J UALL

Al

, ~9a!

where

g~z,x9,y9;z,x8,y8!5d~x92x8!d~y82y9!. ~9b!

The third term in~9a! is the characteristic functional,

FnuAL@v~• !,x~• !,y~• !;Z8,Z9#[K expH i E
Z8

Z9
dt v~t!n@t,x~t!,y~t!,A#J UALL

Al

5expH (
n51

`
i n

n! EZ8

Z9
dt1•••E

Z8

Z9
dtnKnuAL

~n! ~t1 ,x1 ,y1 ;...;tn ,xn ,yn!v1•••vnJ , ~10a!

where

KnuAL
~n! ~t1 ,x1 ,y1 ;...;tn ,xn ,yn![^^n~t1 ,x1 ,y1 ,A!•••n~tn ,xn ,yn ,A!uAL&& ~10b!

is thenth-order conditional cumulant~semi-invariant! with respect to$n@t,x~t!,y~t!;A#uAL%. In ~10!, xn[x~tn!, yn[y~tn!, and
vn[v(tn)5k/2. In ~10b!, ^^ && denotes cumulant average. Because a longitudinal correlation is kept, the trajectoriesx~t! and
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y~t! are coupled throughout the propagation path. This renders the characteristic functional global, and thus differential
equations cannot be obtained. The characteristic functional is written in terms of the characteristic functional of the dielectric
permittivity as

FnuALFv~• ![
k

2
,x~• !,y~• !;Z8,Z9G[F ẽ uALF k2 at~• !;Z8,Z9G5K expF i k2 E

Z8

Z9
dtE d2x8at~x8!ẽ~z,x8!GUALL

Al

, ~11!

whereat~•! is defined in~7b!; note thatat~•! depends onx andy as parameters, and through them ont. To obtain^g&, we
apply ^g(•)&AL, and use it in~8c!.

Propagation through a d-correlated medium

The propagation through ad-correlated medium is obtained with

KnuAL
~n! ~t1 ,...,tn!.Keff

~n!~t1 ;x1 ,y1 ,...,xn ,yn!d~t12t2!•••d~tn212tn!, ~12!

wherexn[x~tn!PR2N andyn[y~tn!PR2M. This case leads to

UeffFv~• ![
k

2
,x~• !,y~• !;Z8,Z9G5 (

n51

`
1

n! S i k2D
nE

Z8

Z9
dt Keff

~n!@t,x~t!,y~t!#. ~13!

A d-correlated model is an idealization that is pertinent when many longitudinal scales of a homogeneous process are
embedded in the correlation length of the field. The latter is of the order of the propagation range,Z[Z92Z8 @7#. The
longitudinal correlation of the medium is usually very small compared with the range. Therefore thed-correlated model applies
and the position ofx~t1! andy~t2! is contracted to the same plane,t5t15t2. In this case, we can expandg~z1Dz,x,y;Z8,x8,y8!
in a Taylor series up toO(Dz2) and get

]zg~z,x,y;Z8,x8,y8!5
i

2k
@Dx2Dy#g~z,x,y;Z8,x8,y8!1H ik2 U~z,x,y!1]zUeffFv[

k

2
,x,y;Z8,zG J g~z,x,y;Z8,x8,y8!,

~14a!

with the initial condition

g~Z8,x9,y9;Z8,x8,y8!5d~x92x8!d~y82y9!. ~14b!

A similar partial-differential equation was derived for homo-
geneously random media by Klyatskin@8#. To obtain^g&, we
apply ^g(•)&AL, use it in~8c!, and repeat the procedure used
to derive~14! to obtain an analogous equation for the large-
scale variability.

IV. STATISTICAL MODELS FOR THE SMALL- AND
LARGE-SCALE VARIABILITIES

It has been argued in the past@9# and recently confirmed
by wavelet decomposition@10# that a turbulent realization
can be decomposed orthogonally into a small-scale process
that is practically Gaussian, and a large-scale process that
accounts for the burstlike coherent structures. Following
these findings, we adopt for the small-scale eventA l a con-
ditional zero-mean homogeneousd-correlated Gaussian pro-

cess,s~•!. This assumption is justified because we have many
small-scale events in each characteristic scale ofS~•! and
consequently, also in the rangeZ5Z92Z8. For the large-
scale eventAL , we introduce a heuristic yet flexible model
of the filtered point processS~•!. To account for the cascad-
ing of energy from large into small scales, we keep the en-
semble and alloŵS~•!s~•!&Þ0.

The large-scale processS~•! assumes the form

S~R;$Jn%,$Rn8%!5 (
n51

N

W~R,Rn ,Jn!,

~15!
Rn ,RPR3, N>1

with S~•!50 for N50. It depends on a three-dimensional
position vectorR[(z,x), wherexPR2. The numberN fol-
lows a point distributionP$N5N%. The set of points is dis-
tributed with the nonuniform densityfR(R). The set$W~•!%
consists of functions with compact support, centered around
the random points$Rj%, j51,...,N. It is chosen according to
the prevalent feature observed visually or with a pattern rec-
ognition process, and finally shaped in accordance to spectral
demands, similarity laws, etc. The parameter set$Jj % con-
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sists of independent, identically distributed random vectors
that modulate all the properties ofW~•!. The components of
J can describe local features such as local frequency, ampli-
tude, duration, slopes, contour moments: centroid, moment
of inertia, etc., and can also switch between sets of functions.
The distribution of the parametersfJ~J!, as well as the local
distribution of the burstsfR(R), must be found and param-
etrized from temperature data. Finally, we also allowfR(R)
to be random by denoting it byfR(R). We assume that our
propagation process evolves in an effective scattering vol-

umeVs that is smaller than the volumeV on whichfR(R) is
defined, i.e.,*Vd

3R fR(R)51. Roughly speaking, the shape
of Vs is a narrow tube with a radius of the first Fresnel zone.

The filtered point process is convenient for propagation
studies because it can be used to synthesize a quite arbitrary,
burstlike phenomenon, and it has a characteristic functional
in closed analytical form. Using a sequence of conditional
averages in the order$Jn%, $Rn%, N, andfR , it can be shown
that the conditional characteristic functional for givenfR5fR
is

F ẽ ufRF k2 at~• !;Z8,Z9G5^a@ fR8#
N&N , ~16a!

a@ fR8#[11E
Vs

d3R8 fR8~R8!H FJ,sF k2 at~• !,R,R8G21J , ~16b!

FJ,sF k2 a~• !,R,R8G[K FsuJ,R8@at~• !,Z8,Z9# expF i k2 E
Z8

Z9
dtE

xPVs

d2x at~x!W~t,x,R8,J!G L
J

. ~16c!

In ~16b!, Vs is the effective scattering volume, and in~16c!

FsuJ,R8F k2 at~• !;Z8,Z9G[K expF i k2 E
Z8

Z9
dtE

x8PVs

d2x at~x!s~t,x,R8,J!GUJL
s

~17a!

5expH 2
k2

8 E
Z8

Z9
dtE

x1 ,x2PVs

d2x1d
2x2at~x1!at~x2!AsuJ,R8@x1~t!2x2~t!#J , ~17b!

where the assumption of a homogeneousd-correlateds~•!
leads to

AsuJ,R8@x1~z!2x2~z!#.E
2`

`

dz^s@z,x1~z!;R8,J#

3s@z1z,x2~z1z!;R8,J#uJ&s.

~17c!

Examples

Consider now a few examples that seem to be appropriate
for large-scale events of refractivity. We take a large volume
V over which reliable statistics of the point process can be
defined. Then we define a probability of occurrence of an
elementary event inV to bep[Ve/V, i.e., 0,p,1, and de-
fine q[12p. The case ofm events inV out of N indepen-
dent events inV is described by the binomial variatem, with
P$m5muN%5( m

N)pmqN2m, 0<m<N. In this case,N is fixed
and we are looking for̂am&m . Thus the characteristic func-
tional reads

F ẽ ufRF k2 at~• !;Z8,Z9G5 (
m50

N S NmD pmqN2mam5~pa1q!N,

~18!

wherea is defined in~16! and ~17!. Now we apply^F ẽ ufR
@•#& fR , and finally the resultingF ẽ@•# is inserted into the
expression~9a! of the path integral.

An important example is the generalized Poisson process
for inhomogeneous refractivity. This model can include mul-
tiple scattering by aerosols@11# in addition to the turbulence
and the large-scale structures. The binomial variate tends to
the Poisson variate asN→` and p[Ve/V!1, for
m5O(Np) @12#. The limiting distribution is
P$m5m%5e2^m&^m&m/m!. For a nonuniform distribution of
bursts, withN→`, V→`, andp[*VedR fR(R)!1, we de-
fine the intensityL(R)[^N&fR(R) and obtain the character-
istic functional of the generalized Poisson process,

F ẽ F k2 at~• !;Z8,Z9G5K expS E
Vs

d3R L~R!H FJ,s

3F k2 at~• !;Z8,Z9,RG21J D L
L

.

~19!

Many discrete distributions can be used to generalize~16!
and ~18!. Any functionu(t), 0,t,1, that admits Maclaurin
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series with positive coefficients can be used to create a char-
acteristic functionalu~ta!/u(t) @12#. In particular, by using
the binomial variate it is possible to obtain the characteristic
functional forN50,1,... large-scale events along the path. It
is anticipated that a smallN, e.g., 1–4, will produce a sig-
nificant effect, whereas a largeN, e.g.,N.10, will homog-
enize the path. In this case the large-scaled-correlated model
is justified, and a large-scale partial-differential equation can
be obtained using the procedure mentioned in~14!. The mul-
tiple large-scaled-correlated version of the filtered point pro-
cess is obtained by inserting W~z,x,R8,J!
5W~z,x,x8,J!d~z2z8! in ~15!, and carrying out the analysis
analogous to~12!–~14!.

V. CONCLUSIONS

The theory presented here provides closed form expres-
sions that are useful in parametrizing turbulent temperature

data for realistic propagation scenarios, and for validating
simulations of propagation through inhomogeneously ran-
dom media. The correspondence of these expressions with a
readily generated, albeit flexible model, can contribute to a
controlled study of this phenomenon. Although the formula-
tion is rather complicated, it appears that it can be computed
for N5M51, andN5M52 in ~2!–~4!, which are of a great
interest in imaging, energy channeling, and remote sensing
studies.
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